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ABSTRACT: 

Interface science has recently received significant attention due to the development of state-of-

the-art materials and devices that provide powerful ways to create and manipulate charge, spin, orbital, 

and lattice degrees of freedom at interfaces. Motivated by the fact that nanoscale interface science is 

critical for device applications, this talk will focus on sharing the measurement capabilities of 

mapping the interfacial properties of heterostructured structures using cross-sectional scanning 

tunneling microscopy (XSTM) and elucidating the mechanisms inherent in these materials and 

devices.1-6 

In my lab, the establishment of the XSTM technique has provided a measurement tool for probing 

the electronic structure and band alignment of interfaces in cutting-edge heterostructured materials. 

Recently, this technique has been improved by integrating an illumination light source, which enables 

the observation of spatially resolved mapping images of photogenerated carriers at perovskite grains. 

The platform now combines gate-, source- and drain- tunable biasing and will be used to explore 

the electronic structure of cutting-edge device interfaces. This will be a potential demonstration of 

characterization capabilities and provide critical insights into the exploration and innovation of future 

electronic devices. 

 

 

[Representative work] Due to the XSTM/STS approach, the methodology significantly advances 

the understanding of the microscopic spatial interplay of superconductive and charge-ordered phases 

and their interlayer coupling along the c direction in YBa2Cu3O6.81, something, which remained 

elusive since the discovery of superconductivity in YBa2Cu3O6.81 35 years ago.[1] 

 

 

Ref. [1]: Chun-Chih Hsu, Bo-Chao Huang, Michael Schnedler, Ming-Yu Lai, Yuh-Lin Wang, Rafal E. 

Dunin-Borkowski, Chia-Seng Chang, Ting-Kuo Lee, Philipp Ebert, Ya-Ping Chiu, Nature 

Communications volume 12, Article number: 3893 (2021). 
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ABSTRACT 

In the IT devices around us, such as PCs, smartphones and smart cars, numerous semiconductor 

nanoelements are working at clock rates already higher than 1 GHz. So, to investigate and improve 

such semiconductor nanoelements, our group has been working on developing ultrafast microscopes 

by combining scanning tunnelling microscopy (STM) with pump-probe technique.  

In this presentation, I first review the basic concepts of the pump-probe STM (Fig. 1) and present 

its three different implementations we have developed in our group. Figure 2 is a demonstrative 

experimental result measured with one of the three microscopes. It revealed the carrier dynamics in 

a C60 thin film with ~4 monolayer thickness grown on Au(111) substrate with ~1 nm spatial resolution 

and ~1 ps temporal resolution. I will clarify the abilities and limitation of our microscopes and also 

briefly mention about time resolved STM/AFM with a little different concept. 

 

 
Fig. 1: Concept schematic of pump-probe 
STM. Conventional STM measures the 
tunnel current flowing through the small 
gap between a metallic tip and a biased 
conductive sample. In pump-probe STM, 
two pulses, pump pulse and probe pulse are 
applied to this tunnel gap and the response 
of the tunnel current to the probe pulse is 
precisely measured by lockin technique. 

 
Fig. 2: Picosecond (ps = 10-12 sec) time-
resolved scanning tunneling microscopy 
measurement of the carrier dynamics in a 
C60 thin film with ~4 monolayer thickness 
grown on Au(111) substrate. It is clearly 
visualized that the carriers doped in the 
LUMO band from the Au substrate is 
localized at the surface steps with one 
molecular heights in their ~10 ps lifetime. 
[2] 
 

 
References: [1] S. Yoshida et al., The European Physical Journal Special Topics 222, 1161-1175 

(2013); DOI: 10.1140/epjst/e2013-01912-2 [2] S. Yoshida et al., ACS Photonics 8, 315-323 (2021); 
DOI:10.1021/acsphotonics. 0c01572 [3] Y. Arashida, ACS Photonics 9, 9, 3156-3164 (2022); 
DOI:10.1021/acsphotonics.2c00995 
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ABSTRACT 

  

Based on the measured and the TCAD 

simulation results, this paper provides a 

detailed description of the third quadrant 

characteristics of the Schottky barrier diode 

(SBD) embedded MOSFETs with different 

Schottky area ratios of 2.6 %, 5.3 %, and 14.7 %. 

As the Schottky area ratio increases, the shift of 

the third quadrant turn-on voltages of the 

MOSFETs influenced by the gate voltage 

decreases. The shift rates in the conventional 

MOSFET and SBD-embedded MOSFETs are 

from 57.2 % to 0 % when Vgs changes from 0 

V to   4 V. The shift rate becomes 0 % when 

the Schottky area ratio is larger than 5.3 %. 

Simultaneously, the TCAD simulation results 

and the measured results indicate that the SBD-

embedded MOSFETs can effectively suppress 

the conduction of the low barrier diode and the 

body diode.  

 Furthermore, the SPICE models were 

built to explain the physics mechanisms. The 

fitting error between the measured and fitting 

results is as low as 1.3 % among the models 

with the different Schottky area ratios.  

 
Fig. 1. The equivalent circuits for an SBD- 

embedded MOSFET.  
 

 
Fig. 2. The measured third quadrant Ids–Vds 

curves of the MOSFETs A and D.  
 

 
Fig. 3. The simulated electron current densities 

of MOSFET D at Vgs = 0 V and Vds = 0, -0.8 
-2, -3, -5 V. 
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A pin diode built into an SiC power MOSFET can be used as an FWD in inverter circuits. However, the 

reverse recovery characteristics of body-pin diodes are inferior to those of SBDs. High-energy electron 

irradiation is one method to control the carrier lifetime in the drift layer by introducing point defects, which 

improves the reverse recovery characteristics of the body-pin diode. However, this may affect the MOS 

channel characteristics. In this study, we analyze electron-irradiated SiC power MOSFETs, focusing on 

their effects on the drift layer resistance (Rdrift) and MOS channel characteristics such as the threshold 

voltage (Vth), subthreshold swing (SS), and transconductance (gm). 

Commercially available 1.2 kV-class SiC trench MOSFETs were irradiated with electrons at 4.6 MeV 

in 20 kGy increments up to 400 kGy at room temperature. 600 V-class Si power MOSFETs were also used 

for comparison. No thermal treatment was performed after the irradiation. 

Figure 1 shows the dose dependence of the reverse recovery charge (Qrr) of the body diode. Electron 

irradiation at 40 kGy reduced Qrr by approximately half. In other words, electron irradiation effectively 

improves reverse recovery characteristics. However, it should be noted that the on-resistance (Ron) of the 

MOSFET increased, as shown in Fig. 2. The degraded Ron can be attributed to the increase in resistance in 

both the drift layer and the MOS channel (Rch) owing to defect generation. 

To investigate the effect of irradiation on the MOS channel in detail, we analyzed the transfer 

characteristics to evaluate Vth, SS, and gm. Figure 3 compares the subthreshold characteristics of the SiC and 

Si MOSFETs. The changes in the subthreshold characteristics are significantly different between the SiC 

and Si MOSFETs. Evidently, a large shift in Vth by –6 V and degradation in SS were observed for the Si 

MOSFETs, while a smaller shift in Vth by –1 V and no degradation in SS were observed for the SiC 

MOSFETs, as indicated in Fig. 4. 

The changes in gm also show different trends for the SiC and Si MOSFETs, as shown in Fig. 5. 

Considering the voltage drop in the drift layer, the drain current (Id), Rch, and gm of a power MOSFET can 

be expressed using Eqs. (1)–(3) [1]. Here, resistances other than Rdrift and Rch are assumed to be negligible. 

As shown in Eq. (3), gm of a power MOSFET depends not only on the channel mobility but also on Rdrift. 

Therefore, to remove the influence of the change in Rdrift, the corrected transconductance (gm') was 

introduced, as shown in Eq. (4). From Eq. (2), Rdrift can be derived from the extrapolated intercept of the 

Ron - (Vgs – Vth)
-1 plot [1], and the obtained Rdrift at different doses are shown in Fig. 6. It was found that Rdrift 

increases with the dose owing to the reduced carrier density caused by the introduction of point defects in 

the drift layer [2]. From Eq. (4), gm' can be calculated at each point of the Id - Vgs curves shown in Fig. 3. 

The variation of the peak ratio of gm and gm' is shown in Fig. 7. Both gm and gm' in the Si MOSFETs 

decreased with irradiation. On the other hand, irradiation reduced gm but hardly changed gm' in the SiC 

MOSFETs. This implies that gm of the SiC MOSFETs decreased owing to the increase in Rdrift, not Rch. 

Considering the trends of SS and gm', it can be 

concluded that the density of interface defects in 

the Si MOSFETs increased under electron 

irradiation. By contrast, in the SiC MOSFETs, 

electron irradiation was found to have minimal 

impact on the MOS channel properties, except for 

a small shift in Vth. Therefore, the MOS interface 

of SiC MOSFETs is more resistant to electron 

irradiation than that of Si MOSFETs. 
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[1] S. L. Rumyantsev, et al., Semicond. Sci. Technol., 24, 075011 (2009). 

[2] J. Vobecky, et. al., IEEE Trans. Electron Devices, 62, 1964 (2015). 

  
Fig. 1. Change of Qrr in irradiated  

SiC MOSFETs measured at 175 °C. 

Fig. 2. Output characteristics shift  

in SiC MOSFETs under electron irradiation. 
  

  
Fig. 3. Subthreshold characteristics shift in SiC 

and Si MOSFETs under electron irradiation. 

Fig. 4. Shift in Vth and degradation in SS of 

irradiated SiC and Si MOSFETs. 
  

  
Fig. 5. Change of gm in irradiated  

SiC and Si MOSFETs. 

Fig. 6. Increase in Rdrift for SiC and Si MOSFETs 

with different doses. 
  

 

 

Fig. 7. Changes in gm and gm' for SiC and Si 

MOSFETs with different doses. 
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ABSTRACT 

 

The relentless demand for faster data rates and higher bandwidth in telecommunications, data 

centers, and emerging generative AI applications underscores the critical need for advanced optical 

communication technologies. Vertical-Cavity Surface-Emitting Lasers (VCSELs) stand at the 

forefront of this technological evolution, offering unparalleled advantages in terms of efficiency, 

scalability, and integration capabilities. This presentation delves into the cutting-edge realm of high-

speed VCSELs, with a special emphasis on oxide-confined VCSELs, which are pivotal for achieving 

high-speed data communication. 

We commence with a foundational overview of VCSEL technology, highlighting its operational 

principles and the significant advantages offered by oxide confinement, including enhanced 

modulation speeds and reduced power consumption. The discourse then transitions to the myriad 

applications of high-speed VCSELs, ranging from data center transceivers and Active Optical Cables 

(AOC) to co-packaged optics for chiplet integration, and their critical role in supporting the 

bandwidth-intensive requirements of Generative AI technologies. 

Central to our exploration is the recent progress in oxide-confined VCSEL technology, 

encapsulating the latest design innovations, technical breakthroughs, and the notable contributions of 

leading industry players and academic institutions. Through selected case studies, we underscore the 

real-world impact and the transformative potential of these advancements in optical interconnects. 

The presentation addresses the existing challenges facing VCSEL technology and posits future 

directions for research and development. By navigating the current limitations, we spotlight the 

roadmap for VCSELs in ushering in a new era of optical communications. 

 

 

 

 

 




